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Abstract— 

 Human activity recognition (HAR) plays a crucial role in the Internet of Things (IoT) domain, 

underpinning various healthcare, fitness, and security applications. However, the large volume of data 

generated by IoT sensors poses computational challenges for HAR systems. While dimensionality 

reduction techniques offer a solution, their effectiveness depends on factors such as data quality, 

algorithm selection, and feature space design. This paper proposes a design thinking approach to 

dimensionality reduction for enhancing HAR in IoT using data analytics and machine learning 

algorithms. The study presents a comprehensive framework that integrates user-centric design, data 

exploration, feature engineering, and machine learning modeling to improve the accuracy and 

efficiency of HAR systems. The method's performance is evaluated using a publicly available HAR 

dataset, demonstrating that the framework significantly reduces the feature space with minimal 

information loss, resulting in improved accuracy and system efficiency. This research highlights the 

application of design thinking in overcoming dimensionality reduction challenges in HAR, with 

important implications for the development of effective and user-friendly IoT applications. 

 

Keywords: Human Activity Recognition, Internet of Things, Dimensionality Reduction, Machine 

Learning, Design Thinking Approach.  

  

Introduction 

HAR has become a vital application within the IoT domain, supporting numerous healthcare, fitness, 

and security applications. However, the vast amount of data generated by IoT sensors can make HAR 

computationally demanding. To mitigate this challenge, dimensionality reduction techniques have 

been explored, though their effectiveness hinges on factors such as data quality, algorithm selection, 

and feature space design. Despite these efforts, there remains a need for enhanced accuracy and 

efficiency in HAR systems within IoT. A design thinking approach, which emphasizes user-centric 

design, can offer a fresh perspective to tackle this issue [1]. This paper proposes a design thinking 

approach for dimensionality reduction aimed at improving HAR in IoT using machine learning 

algorithms. The proposed framework integrates user-centric design, data exploration, feature 

engineering, and ML modeling to enhance the precision and effectiveness of HAR systems. The 

objectives of this study are to: (1) identify key challenges in dimensionality reduction for HAR in IoT, 

(2) propose a design thinking framework for dimensionality reduction in HAR, and (3) evaluate the 

framework's effectiveness in boosting the precision and efficiency of HAR systems. HAR systems 

generally follow a standard workflow that includes data collection, pre-processing, feature extraction, 

feature selection, and classification. These steps are crucial for the development and operation of HAR 

systems, with sensor selection tailored to the specific activities being detected. Pre-processing 

techniques prepare raw data for analysis, high-level features are extracted based on expert input, and 

the most relevant features are chosen for classification, which then differentiates between activities 

within the feature space. Each of these steps directly impacts the performance of HAR systems [2]. 

 

The proposed framework utilizes user-centric design through the Kano model, data exploration with 

the t-SNE algorithm, feature engineering via PCA, and machine learning modeling using SVM to 

enhance the accuracy and efficiency of HAR systems. Evaluated on a publicly available HAR dataset, 

the results demonstrate that the framework significantly reduces the feature space with minimal 
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information loss, thereby improving the overall performance of HAR systems. This study provides 

valuable insights into the application of design thinking in overcoming dimensionality reduction 

challenges in HAR, which is crucial for developing efficient and user-friendly IoT applications [3]. 

 

Literature Review 

Several studies have explored various approaches to enhance Human Activity Recognition (HAR) 

systems through dimensionality reduction techniques and machine learning models. Khan et al. (2019) 

used the UCI-HAR dataset to develop an HAR system using various ML algorithms [4]. The dataset 

contained sensor readings from a smartphone worn by subjects performing six different activities, such 

as walking and sitting. The authors achieved an accuracy of up to 94% using the random forest 

algorithm. Hossain et al. (2020) used the same UCI-HAR dataset as Khan et al. but also included data 

from wearable sensors. They used various ML algorithms and achieved an accuracy of up to 96% [5]. 

 

Bu et al. (2021) used a custom dataset consisting of accelerometer readings from subjects performing 

seven activities, such as walking and cycling [6]. They used various ML algorithms and achieved an 

accuracy of up to 98%.  Xia et al. (2021) used a dataset consisting of passive infrared motion sensor 

readings from smart homes. They used various feature extraction techniques and achieved an accuracy 

of up to 92% using the support vector machine algorithm [7]. Zhang et al. (2021) employed a deep 

learning-based model using the WISDM dataset and utilized Principal Component Analysis (PCA) 

and t-SNE for dimensionality reduction, achieving an accuracy of 93.70% [8]. Nguyen et al. (2020) 

used a machine learning-based model on the UCI-HAR dataset, applying Linear Discriminant Analysis 

(LDA) and PCA to achieve an accuracy of 92.50% [9]. Bao et al. (2019) developed a deep learning 

model that combined autoencoders (AE) with PCA on the UCI-HAR dataset, reaching 92.30% 

accuracy [10]. Bajaj et al. (2018) implemented a machine learning approach using PCA and LDA on 

the UCI-HAR dataset, resulting in an accuracy of 92.00% [11]. Similarly, Khan et al. (2017) utilized 

a deep learning model with autoencoders and PCA, achieving 91.60% accuracy on the UCI-HAR 

dataset [12]. 

 

Wang et al. (2020) presented a deep learning-based approach on both the UCI-HAR and 

OPPORTUNITY datasets, utilizing autoencoders and achieving accuracies of 99.26% and 94.28%, 

respectively [13]. Thangavel et al. (2021) used an ensemble learning approach with PCA on the 

WISDM dataset, obtaining a high accuracy of 95.62% [14]. Yang et al. (2020) employed a multi-

sensor fusion approach on the PAMAP2 dataset, using t-SNE for dimensionality reduction and 

achieving 95.50% accuracy [15]. Islam et al. (2019) applied a feature selection approach using 

Recursive Feature Elimination (RFE) on the UCI-HAR dataset, reaching an accuracy of 96.62% [16]. 

Lee et al. (2018) took a rule-based approach on the UCI-HAR dataset and achieved 94.05% accuracy 

without employing any specific dimensionality reduction technique [17]. Zhang et al. (2020) proposed 

a hybrid feature selection method using PCA and ReliefF on the WISDM dataset, resulting in a 93.53% 

accuracy [18]. Lastly, Feng et al. (2019) focused on feature extraction using the Fourier Transform on 

the UCI-HAR dataset, achieving an accuracy of 94.47% [19]. These studies underscore the diverse 

methodologies applied to improve HAR systems, highlighting the effectiveness of various 

dimensionality reduction and machine learning techniques. 

 

MATERIALS AND METHODOLOGY  

Kano Model Application for HAR System Design with WISDM Dataset 

The Kano model was employed to design a HAR system that meets the needs and expectations of the 

target user group. This approach helps in identifying essential features, performance attributes, and 

delighters to ensure the system's success. The steps involved in applying the Kano model are as 

follows: 
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Table.1. Steps for Applying the Kano Model (Design Thinkinng Model) 

Step Description 

Define the User 

Group 

Identify and understand the needs, preferences, and expectations of the target 

user group for the HAR system. 

Identify the 

Features 

List all potential features that the HAR system could offer, including essential 

functions, performance enhancements, and user experience improvements. 

Classify the 

Features 

Categorize each feature as a must-have, performance attribute, or delighter 

based on user feedback and the Kano model analysis. 

Performance 

Attributes 

Focus on features that enhance the system's performance, such as accuracy, 

processing speed, and reliability, which directly affect user satisfaction. 

Delighters Identify features that add unexpected value to the user, offering a competitive 

advantage by exceeding user expectations. 

Prioritize 

Features 

Rank the features according to their importance and impact on user 

satisfaction, ensuring that must-haves are prioritized before other categories. 

Implement and 

Test 

Develop the HAR system using the prioritized features and test it with the 

WISDM dataset to ensure it meets the defined user requirements effectively. 

 

Data Exploration: 

To analyse data and visualize the relationships among various features in the WISDM dataset, the t-

distributed Stochastic Neighbour Embedding (t-SNE) algorithm was applied. Below is the pseudo code 

for using t-SNE for HAR: 

1. Load the WISDM Dataset: Begin by loading the dataset to prepare it for analysis. 

2. Pre-process the Data: Clean the dataset by removing any missing values and normalizing the 

accelerometer readings to ensure consistency. 

3. Select Output Dimensions: Set the target output space to 2 dimensions for effective visualization. 

4. Initialize t-SNE: Set up the t-SNE algorithm with parameters such as perplexity = 30, learning 

rate = 200, and number of iterations = 1000. 

5. Apply t-SNE: Use the t-SNE algorithm to project the data into the selected 2-dimensional output 

space. 

6. Visualize with Scatter Plot: Plot the transformed data using a scatter plot to observe patterns and 

relationships. 

7. Analyse the Visualization: Examine the scatter plot to identify clusters or patterns that could guide 

feature selection for the HAR system. 

 

By interpreting the visualization, valuable insights can be gained into the feature interrelationships, 

aiding in the design of an efficient HAR system. 

 

Feature Extraction 

In the context of WISDM for HAR, feature extraction is the process of generating a set of numerical 

features from raw accelerometer data that may be used to represent and discriminate various physical 

activities. A basic example of feature extraction for the WISDM dataset is calculating the mean and 

standard deviation of accelerometer measurements for the three axes (x, y, and z) for a given time 

window, such as 2.56 seconds. These statistics can be calculated using the following equations: 

 

𝑚𝑒𝑎𝑛(𝑥)  =  𝑠𝑢𝑚(𝑥) / 𝑁  
𝑠𝑡𝑑(𝑥)  =  𝑠𝑞𝑟𝑡( 𝑠𝑢𝑚((𝑥 − 𝑚𝑒𝑎𝑛(𝑥))^2) / (𝑁 − 1) ) 

 

In the above equation, 'x' symbolizes the accelerometer readings for a certain axis, 'N' represents the 

total number of samples inside the specified time window, and ‘sum ()' denotes the sum of all the 

samples present. This equation computes the total of accelerometer readings for a specified axis over 

a given time period, and sqrt() is the square root function. These two characteristics (mean and standard 
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deviation) can then be merged to form a six-dimensional feature vector by doing the same computation 

on the accelerometer values for the other two axes (y and z). This feature vector can be used as input 

into a machine learning system for activity recognition. [22]. 

  

Feature Selection  

It is the process of selecting significant features from a set of extracted features for classification in 

HAR. WISDM selects features based on their variation and association with the activity classifications. 

Principal Component Analysis (PCA) is a commonly used technique for feature selection in HAR 

problems. [23]. 

 

Standardization of data: 

• Mean: 𝜇 =  (1/𝑁) ∗  ∑(𝑥_𝑖) 

• Standard deviation: 𝜎 =  𝑠𝑞𝑟𝑡((1/𝑁)  ∗  ∑((𝑥_𝑖 −  𝜇)^2))  
• Standardized data: 𝑥′_𝑖 =  (𝑥_𝑖 −  𝜇) / 𝜎  
 

Covariance matrix: 

• Covariance among two variables x and y:  

𝑐𝑜𝑣(𝑥, 𝑦)  =  (1/𝑁) ∗  ∑((𝑥_𝑖 −  𝜇_𝑥)  ∗  (𝑦_𝑖 −  𝜇_𝑦)) 

 

• Covariance matrix of standardized data:  

𝑆 =  [𝑐𝑜𝑣(𝑥_1, 𝑥_1), 𝑐𝑜𝑣(𝑥_1, 𝑥_2), . . . , 𝑐𝑜𝑣(𝑥_𝑛, 𝑥_𝑛)] 
 

Eigen decomposition: 

• Eigenvectors and eigenvalues of covariance matrix: 𝑆 ∗  𝑣 =  𝜆 ∗  𝑣, where v is an eigenvector 

and λ is its corresponding eigenvalue 

 

PCA feature selection: 

• Sort eigenvalues in descending order and select top k eigenvectors 

• Project standardized data onto k-dimensional subspace defined by selected eigenvectors:  

 

xi = v1 * xi + v2 * xi + ... + vk * xi 

 

Classification 

Classification in Human Activity Recognition (HAR) involves assigning labels or categories to 

sequences of sensor data captured from wearable or environmental sensors, identifying the type of 

activity being performed by the user. HAR classification algorithms analyze sensor data to learn 

patterns associated with specific activities, allowing them to predict the corresponding activity from 

new, unseen data. The process of applying machine learning to HAR starts with collecting sensor data 

from wearable devices. After data collection, pre-processing techniques are applied to clean and 

standardize the data, ensuring its quality and reliability. Next, relevant features are extracted from the 

pre-processed data, which serve as input variables for the machine learning model. The model then 

learns patterns from these features, enabling it to make accurate activity predictions based on new data. 

 

Linear Regression (LR): 

For the WISDM dataset in HAR, LR predicts a continuous target variable (e.g., energy expenditure) 

based on input features like accelerometer and gyroscope data. 

1. Prepare Data: Split the dataset into training and testing sets. 

2. Normalize: Scale feature values to avoid bias. 

3. Train Model: Fit the Linear Regression model on the training data. 

4. Predict: Use the model to predict values for the testing data. 
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LR finds the best-fit line by adjusting slope and intercept to minimize the prediction errors. This allows 

the model to predict new values based on the learned relationship between features and the target 

variable. 

 

Support Vector Regression (SVR): 

SVR is a ML technique used for predicting continuous values. It works by transforming data into a 

higher-dimensional space to find a function that best fits the data. The goal of SVR is to identify a 

function that accurately predicts output values for new inputs based on training data. SVR involves 

mapping input data to a higher-dimensional space using a nonlinear function. The model learns to fit 

the data while maintaining a margin of error, aiming to balance prediction accuracy with model 

complexity. The algorithm uses optimization techniques to determine the best parameters for the 

function, which are then used to make predictions on new data. 

 

1. Transform Data: Map the input data to a higher-dimensional space using a nonlinear function. 

2. Train Model: Learn the best function to fit the training data while allowing a margin of error. 

3. Optimize Parameters: Use optimization techniques to find the best model parameters. 

4. Make Predictions: Apply the trained model to predict output values for new data. 

 

Decision Tree Regression (DTR): 

DTR is a machine learning algorithm used for predicting continuous target variables. The DTR model 

builds a decision tree by recursively partitioning the feature space into smaller regions. Here's how it 

works: 

 

• Select a Feature and Threshold: Choose a feature and a threshold to split the dataset, aiming to 

reduce prediction error in the subsets. 

• Split Data: Divide the data into two groups based on the chosen feature and threshold. 

• Repeat Splitting: Apply the splitting process recursively to each group, creating branches and 

nodes, until stopping criteria are met (e.g., maximum depth or minimum samples per leaf). 

• Predict Values: For new data, follow the path from the root to a leaf node in the tree. The predicted 

value is the average of the target values of the data points in that leaf node. 

 

DTR is valued for its simplicity and interpretability, allowing easy visualization of how decisions are 

made. However, it can be prone to overfitting, especially with complex datasets, and may benefit from 

techniques like pruning or ensemble methods to improve performance.  

 

Gradient Boosting Regression (GBR) 

GBR is a powerful machine learning technique used to improve the accuracy of regression models. It 

works by building a strong predictive model through the combination of multiple weak models, 

typically decision trees, in an iterative process. Here’s a simplified overview of the steps involved: 

 

1. Initialization: Begin with a simple model that provides a basic approximation of the target 

variable. This could be as straightforward as predicting the average value of the target. 

2. Iterative Improvement: 

o Compute Residuals: Calculate the residuals, which are the differences between the observed target 

values and the predictions made by the current model. These residuals represent the errors that 

need to be corrected. 

o Fit Weak Learner: Train a weak model, often a decision tree with limited depth, to predict these 

residuals. This weak model aims to correct the errors made by the existing model. 

o Update Model: Add the predictions from the weak model to the existing model, adjusting the 

predictions by a factor known as the learning rate. This step refines the model by focusing on the 

errors of the previous iteration. 
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3. Final Model: After completing the predefined number of iterations, the final model is a weighted 

sum of all the weak models. This ensemble approach captures complex patterns in the data and 

improves overall prediction accuracy. 

 

In applications such as the WISDM dataset for HAR, Gradient Boosting Regression can be used to 

analyse sensor data to predict activity labels with high precision. The iterative approach helps in 

effectively capturing intricate relationships within the data, leading to robust and accurate predictions. 

 

Ensemble Gradient Boosting (EGB): 

The Gradient Boosting algorithm is employed to build weak models in an ensemble approach. The 

process begins by initializing the ensemble with a simple model, such as a constant value or the mean 

of the target variable. A Gradient Boosting (GB) model is then trained on the training data and added 

to the ensemble. The residuals, or errors, of this GB model are calculated, and a new GB model is 

trained specifically to predict these residuals. This new model is also added to the ensemble. This 

process of training on residuals and adding models to the ensemble is repeated until a stopping criterion 

is reached. To make predictions, the final output is obtained by summing the predictions from all 

models in the ensemble. The final prediction is represented as the sum of the predictions of each 

individual model in the ensemble, based on the input features. 

 

• Initialize: Start with a simple model. 

• Train Model: Fit a Gradient Boosting model on the data. 

• Add to Ensemble: Include this model in the ensemble. 

• Compute Residuals: Calculate the residuals from the model's predictions. 

• Fit on Residuals: Train a new model on these residuals. 

• Update Ensemble: Add this new model to the ensemble. 

• Repeat: Continue adding models until the stopping criteria are met. 

• Predict: Combine the predictions from all models in the ensemble. 

 

RESULTS AND DISCUSSION 

The following table outlines the hardware and software specifications of the computer used for testing 

various programs related to the WISDM dataset. The system features an Intel i7 processor with 2.6 

GHz and 8 cores, 16 GB of DDR4 RAM, and a Radeon Pro 560X GPU with 4 GB of memory. It runs 

on macOS 64-bit and utilizes Python 3.8 for programming. 

 

Table.2. System Description 

System description 

Processor 
Intel 2.6GHz 8-

core i7 

RAM 16GB DDR4 

GPU 
Radeon Pro 

560X 4GB 

Operating System macOS 64-bit 

Programming 

Language 
Python 3.8 

 

Dataset Description 

The WISDM dataset is a prominent benchmark for HAR research. It comprises data collected from 

smartphone sensors worn at the waist of 36 subjects. The dataset covers six activities, including 

walking and jogging, and contains 1,098,207 samples with accelerometer and gyroscope readings. Pre-

processed for ease of use, it is frequently employed to assess the performance of machine learning 

algorithms in HAR applications [20]. 
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Table.3. WISDM Dataset Description 

Aspect Details 

Dataset Name WISDM 

Usage Benchmark for HAR research 

Data Source Smartphone sensors worn at the waist 

Number of Subjects 36 

Activities 6 (e.g., walking, jogging) 

Total Samples 1,098,207 

Sensors Accelerometer and gyroscope readings 

Data Processing Pre-processed 

Purpose Evaluating machine learning algorithms for HAR tasks [20] 

 

Design Thinking  

To effectively utilize the WISDM dataset for Human Activity Recognition (HAR), the following 

approach can be adopted: 

 

1. Identify Key Attributes: 

o Must-Haves: Accurate and reliable activity recognition, low latency, and real-time processing. 

o Performance Attributes: High accuracy, fast training time, and low computational complexity. 

 

2. Check for Data Imbalance: 

o Count and plot the number of samples for each activity to detect significant discrepancies. 

 

3. Activity Classification Rules: 

o If the mean of the time-domain acceleration (tAccMean) is less than -0.8, the activity is standing, 

sitting, or lying. 

o If tAccMean is between -0.6 and 0.0, the activity is walking, walking downstairs, or walking 

upstairs. 

o If tAccMean is greater than 0.0, the activity is walking downstairs. 

o These rules classify 75% of activity labels accurately but may misclassify some activities. They 

serve as a starting point for developing a more precise classifier. 

 

Feature Classification with t-SNE: 

o Load the WISDM dataset and preprocess it by dropping the timestamp column, filling missing 

values with 0, normalizing features, and splitting the data into features and labels. 

o Use the t-SNE algorithm to classify data points related to stationary and moving activities based 

on the tBodyAccMagmean attribute. 

 

By following these steps, you can effectively analyze and classify activities using the WISDM dataset. 

 

Classification 

The WISDM dataset comprises labeled accelerometer data collected from smartphones worn by users 

performing different activities. Each data point includes acceleration values for the X, Y, and Z axes, 

along with a user ID and an activity label. This dataset is appropriate for supervised machine learning 

(ML) training. To evaluate model performance, it is essential to split the dataset into training and 

testing sets. Prior to training, proper preprocessing and data cleaning may be required. Various ML 

methods can be applied to analyze and compare the classification of the WISDM dataset. In addition 

to previously mentioned algorithms such as LR, SVR, DTR, GBR, and EGB, feature selection 

techniques like PCA can be used to slightly improve accuracy. In regression tasks, common evaluation 

metrics include Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error 

(MAE), and R-squared (R² Score).  
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• MSE measures the average squared difference between predicted and actual values. 

• RMSE is the square root of MSE, providing an estimate of the standard deviation of prediction 

errors. 

• MAE calculates the average absolute difference between predicted and actual values. 

• R² Score represents the proportion of variance in the dependent variable that is predictable from 

the independent variables. 

 

These metrics offer a comprehensive view of model performance for both regression and classification 

tasks. 

 

Table.4. Performance analysis based on Regression Results 

Algorithm 
Before PCA  After PCA 

 

 

MSE RMSE MAE R2 Score MSE RMSE MAE R2 Score  

LR 0.051 0.226 0.142 0.718 0.046 0.214 0.139 0.728  

SVR 0.059 0.243 0.158 0.678 0.044 0.21 0.137 0.742  

DTR 0.064 0.253 0.165 0.654 0.062 0.249 0.163 0.668  

GBR 0.045 0.212 0.138 0.732 0.038 0.195 0.121 0.792  

EGB 0.038 0.194 0.121 0.789 0.034 0.185 0.115 0.818  

 

 
Fig.1. Comparison of Classification Metrics before and After PCA Algorithm 

The table summarizes the impact of PCA on various machine learning algorithms used for regression 

tasks. Applying PCA led to improvements in the performance metrics of LR, SVR, DTR, GBR, and 

EGB. All metrics, including MSE, RMSE, MAE, and R² Score, generally show better results post-

PCA, indicating enhanced model accuracy and reduced errors. 

 

Notably, SVR and GBR exhibited significant improvements after PCA, with reductions in MSE, 

RMSE, and MAE, and increases in R² Score. These results highlight PCA’s role in optimizing the 

performance of these algorithms, making them more effective in handling the dataset's features. The 
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EGB algorithm achieved the best overall performance, demonstrating the lowest MSE, RMSE, and 

MAE, and the highest R² Score after applying PCA. This underscores EGB's robustness and 

effectiveness in improving model predictions, affirming the crucial role of dimensionality reduction in 

enhancing regression tasks' outcomes. 

 

CONCLUSION 

In conclusion, the proposed dimensionality reduction approach using PCA markedly enhances the 

performance of HAR systems within the IoT framework. The results indicate a clear improvement 

across various algorithms post-PCA, with metrics reflecting enhanced accuracy and reduced error 

rates. For instance, LR saw reductions in MSE from 0.051 to 0.046 and RMSE from 0.226 to 0.214, 

alongside improved R2 Score from 0.718 to 0.728. SVR demonstrated a decrease in MSE from 0.059 

to 0.044 and RMSE from 0.243 to 0.21, achieving a higher R2 Score of 0.742. DTR experienced slight 

improvements with MSE dropping from 0.064 to 0.062 and RMSE from 0.253 to 0.249. GBR and 

EGB also showed substantial gains, with GBR’s R2 Score increasing from 0.732 to 0.792 and EGB’s 

R2 Score rising from 0.789 to 0.818. These improvements underscore the effectiveness of PCA in 

refining feature space, optimizing model performance, and reinforcing the framework's capability to 

advance IoT applications in HAR systems. 
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